Skip to main content

扑克的本质笔记(4)

Posted in

上集说到如果BU把自己的策略定于q1=q2=1/3,其结果就是他的EV固定是1/18,无论UTG怎么玩。我们把q1=q2=1/3成为BU的“中立策略”

如果BU偏离了这个中立策略,他就是在某种意义上“犯错误”,因为UTG可以通过选取合适的“对应策略”来使自己的EV提高到 -1/18以上,甚至高于零。

举几个例子来说明这个问题。假如BU拿J的时候Bluff太少,而拿Q的时候call的太少。这相当于正常扑克局里面的tight-timid类型玩家。Phil Hellmuth不是刚刚进城吗,咱就用他的话说。他把所有玩家分为老鼠、大象、野狼、狮子,和老鹰。分别对应tight-timid, calling station, loose-aggressive, rock, 和good player。Phil天下第一自负,当然自诩老鹰。说实在的我非常的不喜欢他,不是因为他自负或者牌技之类的问题,而是他在牌桌上经常不尊重对手,口出秽言肆意污蔑。不过人家是站长请来的客人,咱一届小鱼跟人家战绩没法比,只有高山仰止,远远观望的份。

我靠又跑题了,刚才假设BU是老鼠,bluff太少,call太少。再进一步假设他call的比bluff的还少(算是一只疑神疑鬼的,给对方太多credit的老鼠)。所以我们有q2 < q1 < 1/3。这个时候UTG应该怎么办呢?我们再回忆一下UTG的EV公式

UTG的EV = 1/6 * [ p1(1-3q2) + p2(3q1-1) + p3(q2-q1) -q1] (单位:100$)

我们看到,p1的系数大于零,p2的系数小于零,p3的系数小于零。UTG的对应策略就出来了:让p1=100%, p2=p3=0。翻译成白话文,就是拿到J的时候肆无忌惮的,张牙舞爪的100% bluff;拿到Q的时候如果面临bet,想都不要想就扔牌。拿到K的时候一律check,引诱对方bluff。

UTG的EV (对方是疑神疑鬼的老鼠) = 1/6 * [ -q1 -3q2 + 1]

因为q2 < q1 < 1/3,所以上面公式中UTG的EV一定是大于-1/18的,搞不好还要大于零。比如,当q2=1/6,q1=1/4,这时候UTG的EV就等于1 /24。

反过来站在BU的角度看,如果UTG是大象,也就是passive的calling station怎么办?我们先看看大象有哪些漏洞。大象有好牌的时候也不bet,我们假设UTG的p3=0。BU聪明的看到了这一点,并决定bluff概率为1/6,也就是q1=1/6。

前文说了假设UTG是大象,永远check K,所以p3=0。如果这时候BU拿了个J,BU就开始想了,UTG不是Q就是K,当他拿K的时候永远check,所以他拿Q和拿K的概率是相等的都是 1/2。在他拿K的那一半里,我bluff也没用;在他拿Q的那一半里,我应该以一定概率bluff。bluff多少呢?根据死磕兰斯基的定理,我 bluff 100,以取得200的锅,我需要正好bluff 100/(200+100)= 1/3。但是这是指UTG拿Q的一半里面的1/3,所以我总体上应该bluff 1/6。

BU认为自己很聪明,根据“UTG永远 check K”的额外信息做了这个bluff 1/6的决定。想不到他已经犯错了!UTG不用改变他永远check K 的做法,就可以盈利。我们再来看看,UTG的EV公式为

UTG的EV = 1/6 * [ p1(1-3q2) + p2(3q1-1) + p3(q2-q1) -q1] (单位:100$)

现在已知的是p3=0,只要UTG选择永远不 bluff J, 也永远不call Q, 也就是p1=p2=p3=0的话,UTG的EV就是 1/6 * (-1/6) = -1/36。虽然还是负的,但是已经比-1/18要好。button是轮流的,当UTG转到BU的时候可以使自己q1=q2=1/3以获得1/18的收益,这样他一回合下来总收益就是 -1/36 + 1/18 = 1/36,他赚大了。

总的说来,BU就是q1=q2=1/3,以稳赚1 /18的EV。